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ABSTRACT    

    

Aims: To provide a new reasonable measure for distinguishing between coding and non-
coding regions of DNA sequences based on its fractal nature and self-similarity. 
Study design:  After conducting background studies on the fractal structure of DNA 
sequences, the application of Detrended Fluctuation Analysis for identifying coding and non-
coding regions in those sequences was investigated. Finally, the propositions were tested on 
a standard dataset of 195 genes. 
Place and Duration of Study: Sample: We use a common data set, “HMR 195”, which has 
been used in conventional tools, between December 2012 and July 2013. 
Methodology: The Fractal Scaling Exponent (FSE) of the numerical signal, produced by 
converting a DNA string to a numerical sequence via a number mapping algorithm, was 
calculated for exons and introns of 195 genes. This calculation was repeated twice: once for 
computing the optimal values of FSE, and once for non-optimal FSEs. Analysis of Variance 
(ANOVA) was used for investigating the significance of difference between the average FSE 
of exons versus that of introns in both optimal and non-optimal cases. 
Results: ANOVA indicated a significant gap between the optimal mean FSE of exons (0.65) 
and introns (0.72). The difference, although smaller, was significant for non-optimal values 
as well. 
Conclusion: Throughout this study, the FSE is proved to be a reliable measure for 
distinguishing between coding and non-coding regions of DNA gene sequences based on 
our experiments. Accordingly, this metric can be used for predicting exons/introns when 
embedded within current tools such as TestCode. However, its contribution to the predictive 
accuracy of current methods requires more investigation in the future works. 
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1. INTRODUCTION    

    

The biological information is embedded in the DNA sequence which stores, produces and    
controls processes for growth and maintenance of living systems. This information organized    
in a structure of a nanowire, is encrypted in sequences of four bases, i.e. A, T, G, C. Each    
segment of every organism represents a processor to execute a particular biological    
process. Traditional approaches based on reductionism are hardly ever able to characterize    
more than a tiny subset of the full range of behaviors. In the past years, many well-known    
molecular biologists have pointed out the vital need for theoretical and computational tools to    
show the spatial and temporal organization of macromolecules interaction implicit in the way    
to create a living cell as a whole [1].     



 

 

Gene identification in prokaryotes is easier, because the coding regions are small    
continuous strings of DNA. However, in higher eukaryotic organisms, genes are often split    
into a number of coding sequences (exons) separated by non-coding intervening sequences    
(introns). In gene identification, we can use intrinsic information derived from the query    
sequence itself, in addition to extrinsic information achieved by comparing the query    
sequence with other known sequences in public databases. Examples of intrinsic information    
are promoters, splice sites, and CpG islands. This information can also be derived according    
to the fact that coding region sequences in the DNA exhibit specific statistical properties.    

Locating genes on DNA which has not been analyzed for potential coding regions involves    
using statistical detection methods by using probability models to predict where in a DNA    
sequence a gene is located. The nucleic acid sequence probabilities can be determined    
through analysis of known coding regions and can be categorized into measures that    
depend on coding DNA and measures that are independent of coding DNA. Model    
dependent statistics capture the specific features of coding DNA whereas model    
independent statistics capture the global features of coding DNA. Since model independent    
methods don‟t need a sample of coding DNA they can be used in the absence of previous    
knowledge of the under consideration species. Therefore, there are two approaches namely    
knowledge-based methods and ab-initio techniques. The knowledge-based methods suffer    
from some disadvantages. The methods such as hidden Markov models or Artificial Neural    
Network which uses training based system are organism/dataset-specific and the accuracy    
of this method is affected when the information of newly sequenced genomes or available    
organisms is limited [2].     

The development of high-throughput data-collection techniques for sequencing DNA such as    
next generation sequencing brings vast nucleic acid sequence data rapidly. By sequencing    
the entire human genome and the genomes of several other species, a need for the rapid    
identification of genes on long stretches of sequenced DNA has been emerged. Although the    
conventional gene detection techniques, such as cDNA hybridization, are effective in    
locating transcribed genes, but these methods are based on reductionism approach, time-   
consuming and costly. Due to the present size and increasing rate of new raw data, we need    
systemic and integrative ways of thinking about information organization of genomes to    
check quickly for similarities and differences among them and to explore the interactions    
among genotypes, phenotypes, and the environment. By the advent of Bioinformatics the    
need for new computational tools to analyze and interpret the large amount of nucleotide    
sequences available in databases has been recently highlighted [3].    

One of the whole genome structural features is the long-range correlation or scale-invariant    
property of DNA. This phenomenon implies that the occurrence of a nucleotide in a specific    
position depends on the previous nucleotides and also the occurrence of a small segment of    
nucleotides depends on large scale segments. Such long-range correlation is directly related    
to power-law and fractal structure of the DNA sequence. There is self-similarity among    
different scales of sequences which means that its fragments can be rescaled to resemble    
the original sequence itself.     

In this paper we investigated this global feature of DNA sequence by calculating the Fractal    
Scaling Exponent (FSE) of the numerical signal which is produced by converting a DNA    
string to a numerical sequence by number mapping algorithm.  By this approach, we have a    
numerical signal for a DNA string which could be analyzed by different signal processing    
algorithms.  Based on fractal structure of DNA sequence, in this paper, we implemented    
Detrended Fluctuation Analysis to calculate the FSE of this signal. This measure, that    
captures another aspect of difference between coding and noncoding DNA sequences, can    
be used in existing ab initio prediction methods.    



 

 

    

2. MATERIAL AND METHODS    

    

Providing robust computing solutions for DNA sequence analysis is a challenging issue in    
Bioinformatics. Most of the Bioinformatics tools are currently searching for patterns or    
correlations existing in the DNA sequence based on codons, amino acids, and proteins    
using a variety of sophisticated computational techniques, including neural network    
algorithms, dynamic programming, decision trees, stochastic reasoning, and hidden Markov    
chain.    

The application of chaos and fractal theory considering intrinsic patterns, correlations, and    
self-similarity measurement, is going to be highlighted in several areas of science.    
Correlation properties in DNA sequences have been studied in [4] through fractal landscape    
or DNA walk models, in which genometric method projected the sequence of position for    
each nucleotide on a two dimensional plot representation of the DNA landscape or walk,    
providing a landscape comparable among different genomes [5].    

2.1 Scaling Exponents and Detrended Fluctuation Analysis    

    
The scaling exponent is important in the characterization of long-range correlations in finite-   
length sequences. Peng and co-workers have developed an algorithm to estimate scaling    
exponents with local-detrending to remove the non-stationary components, known as    
Detrended Fluctuation Analysis (DFA) [4]. This technique can be applied to a self-similar    
process through simple integration. A DNA signal of length N, x(s), which has been     
generated from DNA sequence by numerical mapping system, can be integrated to generate     
a self-similar series y(k) by Equation (1).     
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After partitioning the entire range of y(k) into boxes of equal size n, we fit this integrated     
signal by using a polynomial function, yn(k), which is representing the local trend within each     
box. After removing the trend in the root-mean-square fluctuation, F(n), is given by Equation     
(3):     
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The above computation is repeated for boxes with different sizes (scales) to provide a     
relationship between F(n) and the size n. A power-law relation between F(n) and the size of     



 

 

the box, indicates the presence of scaling F(n) ~ nα. F(n) is the average fluctuation and     
usually increases linearly with n.      

This gives the scaling relation:      
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The scaling exponent (self-similarity parameter), α, should therefore be able to completely     
describe the significant correlation properties of DNA signal. Since the Equation (4)     
represents the scale transformation independent of n, then the exponent, α, provides a     
succinct measure of the dynamics across a range of n. For ideal mathematical fractals, such     
behavior persists without a limit in n. However, for real systems, its range is always finite,     
and may in addition be interrupted by dynamical mechanisms which introduce characteristic     
scales into the data. In our investigation this limitation occurred and we had to select an     
optimal range of box sizes. On the other hand, the scaling exponent estimation on the non-    
optimum region could also lead to meaningful results.      

2-2- Converting Sequences to Signal     

As we discussed before, to investigate the fractal property of DNA sequence by DFA, we     
should first convert DNA string to a sequence of numerical values via number mapping     
algorithm. A genome is simply a string of four nucleotide bases A, T, G, and C, and the     
mapping system is also compromised a number system of the base four. The system has     
four digits 0, 1, 2, and 3 assigned to the four bases according to their molecular weights.     
Smaller digits are assigned to higher molecular weights; that is G = 0, A = 1, T = 2, and C =     
3.      

By the fact that double strand of DNA are complementary to each other and according that in     
DNA structure the observed complementary pairing is GC and AT and when we add the     
values of the GC (0+3=3) and AT (1+2=3) a constant value of three is obtained, the signal     
generated by the DNA remains the same to its reverse, complementary, and reverse     
complementary sequence. Thus, in comparison to conventional gene analysis algorithms     
there is no need to take the sequence and run the algorithm and then take the reverse     
complement of the sequence and run the algorithm again in our approach and we have     
analyzed the DNA sequence only once. In order to convert the DNA string to a unique     
number string, a window of size three nucleotides is slid on the sequence to eliminate any     
ORF (Open Reading Frame) related bias. The codons are transformed to numbers using the     
formula F(Xn, Yn, Zn) = 4*4*Xn+4*Yn+Zn for window n containing bases X, Y, and Z. For     
example, for sequence CTGTCA, the first triplet CTG is converted into a numerical value     
after obtaining the numerical value (3, 1, 2) through mapping system described above and     
then using the formula F(C,T,G) = 4*4*3+4*2+0 = 56; then the windows slide to the next     
triples, which are TGT, GTC, TCA and respectively.     

2-3- Dataset     

We use a common data set, “HMR 195” [6], which has been used in conventional tools.     
Below is a part of detailed description of this database exactly as stated in its website     
(http://blogs.ubc.ca/sanja/hmr195-dataset/):     

DNA sequences were extracted from GenBank release 111.0 (April 1999). The basic     
requirements in sequence selection were:     

• the sequence was entered in GenBank after August, 1997     

http://blogs.ubc.ca/sanja/hmr195-dataset/


 

 

• the source organism is Homo sapiens, Mus musculus or Rattus norvegicus     
• only genomic sequences that contain exactly one gene were considered     
• mRNA sequences and sequences containing pseudo genes or alternatively spliced     

genes were excluded.     

Sequences collected according to those principles were further filtered to meet following     
requirement:     

• all annotated coding sequences started with the ATG initiation codon and ended     
with one of the stop codons: TAA. TAG, TGA.     

• all exons had dinucleotide AG at their acceptor site and dinucleotide GT at their     
donor site.     

• sequences that did not contain any nucleotides in their 5‟ or 3‟ UTR were discarded.     
• the sequences whose coding region contains in-frame stop codon were discarded.     

HMR195 has the following characteristics:     
• the ratio of Human: Mouse: Rat sequences is 103:82:10     
• the mean length of the sequences in the set is 7,096 bp     
• the number of single-exon genes is 43 and the number of multi-exon genes is 152.     
• the average number of exons per gene is 4.86.     
• the mean exon length is 208 bp, the mean intron length is 678 bp and the mean     

coding length of a gene is 1,015 bp (~330 amino acids).     

3. RESULTS AND DISCUSSION     

     

This section presents the results of our approach to analyzing the FSE of genome signal on     
mentioned dataset. As discussed before the first step is converting DNA sequence to     
genome signal by numerical mapping system presented in the previous section. The     
analysis was carried out after separating the intron and exon from the dataset. Any signal     
processing method can now be used to determine the variation or extract the biological     
feature form generated signals of introns and exons.     
As we discussed before based on fractal structure of DNA sequence, we implemented DFA     
to calculate the FSE of this signal. The details of this algorithm have been mentioned in the     
previous section. The scaling exponent can be approximated as the slope of log(F(n))     
against log(n). The parameter α, called the scaling exponent or correlation exponent,     
represents the correlation properties of the signal. If α = 0.5, there is no correlation and the     
signal is an uncorrelated signal (white noise); if α < 0.5, the signal is anti-correlated; if α >     
0.5, there are positive correlations in the signal. Therefore, finding scaling exponents in the     
range 0.5 to 1.0 would indicate long-range power-law correlations of the kind which are     
ubiquitous in nature.      
Although the algorithm is simple but the process of optimal feature selection on large     
amounts of data, is not a straightforward problem. In this section, we discuss the optimal     
FSE estimation by selecting the best box sizes which lead to meaningful exon and intron     
signal separation.        
As illustrated in Fig. 1, when we use conventional DFA methods, in which all box sizes for     
slope estimation are used and a non-optimal scaling region has been defined, the diagram     
starts from small box size (n), for which the data is fully matched by detrending step and     
therefore the output value, F(n), is so small. On the extreme of the diagram, when n     
becomes large, there is some box sizes in which detrending is saturated and no meaningful     
increase in fluctuation happens with an increase in the box size. Thus, the slope estimation     
must be performed on a limited region, where most of the discrimination takes place.      
     



 

 

     
Fig. 1. The result of DFA for exon and intron signals. The scaling exponent can be     
approximated as the slope of log(F(n)) against log(n).     
     
Fig. 2 and 3 show the effect of optimal box size in the slope estimation of log-log plot in Fig.     
1. The FSE for both exon and intron is mostly greater than 0.5 which implies that there is a     
positive correlation in the genome signal. By adaptively checking different margins, we     
observed that it could be possible to choose the minimum best boxes for which the     
fluctuation rate statistically has the best meaningful relation to separate exon and intron     
instead of many boxes in the original DFA algorithm.      
Fig. 2, shows the FSE for non-optimal box sizes derived from the conventional DFA     
algorithm in the slope estimation of log-log plot in Fig. 1. Fig. 3, shows the FSE for optimal     
box sizes in slope estimation of log-log plot.      
     

     
     
Fig. 2. FSE for non-optimal box sizes (Conventional DFA) in slope estimation of log-    
log plot in Fig. 1. FSE for both exon and intron is mostly greater than 0.5 which     
implies that there is a positive correlation in the genome signal.       



 

 

     

     
     
Fig. 3. FSE for optimal box sizes in slope estimation of log-log plot in Fig. 1. FSE for     
both exon and intron is mostly greater than 0.5 which implies that there is a positive     
correlation in the genome signal.       
     
To determine whether differences in these two sets are statistically significant we use     
ANOVA (ANalysis Of VAriance). Since knowing the average and standard deviation is not     
sufficient to determine significance, the ANOVA can be used to see if a data set is     
significantly different from another. The results of this test revealed that FSE significantly     
separates the exon and intron groups and it can be seen that optimal box sizes differentiate     
these two groups more clearly regarding the gap between the mean FSEs of introns and     
exons. Table 1 summarized the result of this test for two different box size ranges.     
     
Table 1: FSE separates the exon and intron groups and it can be seen that optimal     
box sizes differentiate these two groups more significantly.     
     

Significance (P-Value) 
Mean FSE (STD) 
Intron 

Mean FSE (STD) 
Exon 

DFA 

P < 0.01 0.7202 (0.0391) 0.6809 (0.07551) Non-optimal FSE 

P < 0.01 0.7231 (0.0938) 0.6446 (0.04179) 
Optimal FSE 
Box sizes (4-28) 

     
Fractal analysis have been used to disclose long-range correlations in DNA sequences [7-9].     
It has revealed complex patterns in natural objects [10-12]. For example, the genome     
fragments have been classified according to their fractal properties and a prokaryotic     
phylogenetic tree based on fractal analysis has been proposed in [13]. One of fractal     
analysis methods to study long-range correlations in genomes is the DFA [7, 14]. DFA is a     
scaling analysis method that provides a simple quantitative parameter (scaling exponent, α)     
to represent the correlation properties of sequence and the characteristic length scale of     
repetitive patterns.     
The advantages of DFA over other methods are that it permits the detection of long-range     
correlations embedded in the apparent non-stationary signal produced by mapping of a     
sequence of the alphabet to numerical values. Conventional methods such as spectral     
analysis or root mean square fluctuation can be applied only to stationary signal. This     
method also avoids the counterfeit detection of long-range correlations that are artifacts of     



 

 

non-stationarity in sequences and differentiates local patchiness, such as excess of one type     
of nucleotide in a specific region. DFA can be used for local heterogeneouse nucleotide     
content as well as for the entire sequence.     
Moreover, DFA captures the fractal nature of DNA sequences which is not considered in     
traditional bias-based measures like Fickett‟s statistic [15]. While compositional bias is an     
important indicator of coding regions of DNA sequences, but it is not as specific to these     
regions as self-similarity is. Accordingly, FSE could provide a more reasonable metric for     
identifying informative regions in DNA sequences.     
Methods such as Markov models have restrictions in dealing with dependencies at different     
scales, although they are more suitable for short-range nucleotide correlation analysis. Fast     
Fourier transform (FFT) method is also affected at high-frequency analysis of short-range     
correlations related to codon structure, whereas the signal is distorted by artifacts of the     
method especially at low frequencies. A meaningful relation between the self-similarity     
property of DNA sequence and evolution has been reported in [16] which suggested a link     
between long-range correlations and higher order structure of the DNA molecule [17]. Scale-    
independent correlations offer the best tradeoff between efficient information transfer and     
robustness to errors on all scales [16], whereas the information theory suggests that one can     
package the largest amount of information into characters of constant length when a     
sequence is self-similar [18].     
     

4. CONCLUSION     

     

Based on long-range correlation or scale-invariant property of DNA as one of the whole     
genome structural features, in this paper we use the self-similarity and fractal property of the     
numerical signal generated from a DNA sequence. FSE as a global feature has been     
extracted from the signal which belongs to exon and intron signals using DFA. The results     
imply that the FSE for both exon and intron of 195 genes in the dataset are mostly above 0.5     
indicating the presence of long-range correlations and fractal nature of genome signal. More     
importantly the FSE of coding sequences (exon) was significantly lower than sequences that     
were primary noncoding (intron). The FSE of exon segments represents more variation     
compare to FSE of intron segments as illustrated in Fig. 2 and 4. It means that non-coding     
unit of a sequence has a simpler information structure in relation to coding segments (exon)     
which shows more complex information entropy.     
Accordingly, like Fickett‟s statistic, FSE can be exploited in the existing exon/intron     
prediction algorithms like TestCode (http://rothlab.ucdavis.edu/genhelp/testcode.html). This     
could be the topic of next research complementing the present one. Moreover, the presented     
method can be used for other datasets with different target questions. Especially tracing the     
fractal property of the genome in evolution and among diverse species can be invaluable     
topics for future researches. Another issue in separating coding and non-coding regions not     
addressed in this research is the analysis of difference between 3‟ and 5‟ UTRs, as other     
non-coding segments, with other segments of the gene. This, also, can be another potential     
area of research.     
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